Mientras los animales inferiores sólo están en el mundo, el hombre trata de entenderlo; y
sobre la base de su inteligencia imperfecta pero perfectible, del mundo, el hombre intenta
enseñorearse de él para hacerlo más confortable. En este proceso, construye un mundo
artificial: ese creciente cuerpo de ideas llamado "ciencia", que puede caracterizarse como
conocimiento racional, sistemático, exacto, verificable y por consiguiente falible. Por medio
de la investigación científica, el hombre ha alcanzado una reconstrucción conceptual del
mundo que es cada vez más amplia, profunda y exacta.
Un mundo le es dado al hombre; su gloria no es soportar o despreciar este mundo, sino
enriquecerlo construyendo otros universos. Amasa y remoldea la naturaleza sometiéndola
a sus propias necesidades animales y espirituales, así como a sus sueños: crea así el mundo
de los artefactos y el mundo de la cultura. La ciencia como actividad —como investigación—
pertenece a la vida social; en cuanto se la aplica al mejoramiento de nuestro medio natural y
artificial, a la invención y manufactura de bienes materiales y culturales, la ciencia se convierte
en tecnología. Sin embargo, la ciencia se nos aparece como la más deslumbrante y asombrosa de las estrellas de la cultura cuando la consideramos como un bien en sí mismo, esto es como una actividad productora de nuevas ideas (investigación científica). Tratemos de caracterizar el conocimiento y la investigación científicos tal como se los conoce en la actualidad.
2. Ciencia formal y ciencia fáctica
No toda la investigación científica procura el conocimiento objetivo. Así, la lógica y la
matemática —esto es, los diversos sistemas de lógica formal y los diferentes capítulos de la
matemática pura— son racionales, sistemáticos y verificables, pero no son objetivos; no nos
dan informaciones acerca de la realidad: simplemente, no se ocupan de los hechos. La lógica
y la matemática tratan de entes ideales; estos entes, tanto los abstractos como los
interpretados, sólo existen en la mente humana. A los lógicos y matemáticos no se les da
objetos de estudio: ellos construyen sus propios objetos. Es verdad que a menudo lo hacen
por abstracción de objetos reales (naturales y sociales); más aún, el trabajo del lógico o del
matemático satisface a menudo las necesidades del naturalista, del sociólogo o del tecnólogo,
y es por esto que la sociedad los tolera y, ahora, hasta los estimula. Pero la materia prima que
emplean los lógicos y los matemáticos no es fáctica sino ideal.
Por ejemplo, el concepto de número abstracto nació, sin duda, de la coordinación(correspondencia biunívoca) de conjuntos de objetos materiales, tales como dedos, por una
parte, y guijarros, por la otra; pero no por esto aquel concepto se reduce a esta operación
manual, ni a los signos que se emplean para representarlo. Los números no existen fuera de
nuestros cerebros, y aun allí dentro existen al nivel conceptual, y no al nivel fisiológico. Los
objetos materiales son numerables siempre que sean discontinuos; pero no son números;
tampoco son números puros (abstractos) sus cualidades o relaciones. En el mundo real
encontramos 3 libros, en el mundo de la ficción construimos 3 platos voladores. ¿Pero quién
vio jamás un 3, un simple 3?
La lógica y la matemática, por ocuparse de inventar entes formales y de establecer relaciones
entre ellos, se llaman a menudo ciencias formales, precisamente porque sus objetos no son
cosas ni procesos, sino, para emplear el lenguaje pictórico, formas en las que se puede verter
un surtido ilimitado de contenidos, tanto fácticos como empíricos. Esto es, podemos
establecer correspondencias entre esas formas (u objetos formales), por una parte, y cosas
y procesos pertenecientes a cualquier nivel de la realidad por la otra. Así es como la física,
la química, la fisiología, la psicología, la economía, y las demás ciencias recurren a la
matemática, empleándola como herramienta para realizar la más precisa reconstrucción de las complejas relaciones que se encuentran entre los hechos y entre los diversos aspectos de los hechos; dichas ciencias no identifican las formas ideales con los objetos concretos, sino que interpretan las primeras en términos de hechos y de experiencias (o, lo que es equivalente, formalizan enunciados fácticos).
Lo mismo vale para la lógica formal: algunas de sus partes —en particular, pero no
exclusivamente, la lógica proposicional bivalente— pueden hacerse corresponder a aquellas
entidades psíquicas que llamamos pensamientos. Semejante aplicación de las ciencias de la
forma pura a la inteligencia del mundo de los hechos, se efectúa asignando diferentes
interpretaciones a los objetos formales. Estas interpretaciones son, dentro de ciertos límites,
arbitrarias; vale decir, se justifican por el éxito, la conveniencia o la ignorancia. En otras
palabras el significado fáctico o empírico que se les asigna a los objetos formales no es una
propiedad intrínseca de los mismos. De esta manera, las ciencias formales jamás entran en
conflicto con la realidad. Esto explica la paradoja de que, siendo formales, se "aplican" a la
realidad: en rigor no se aplican, sino que se emplean en la vida cotidiana y en las ciencias
fácticas a condición de que se les superpongan reglas de correspondencia adecuada. En
suma, la lógica y la matemática establecen contacto con la realidad a través del puente del
lenguaje, tanto el ordinario como el científico.
Tenemos así una primera gran división de las ciencias, en formales (o ideales) y fácticas (o
materiales). Esta ramificación preliminar tiene en cuenta el objeto o tema de las respectivas
disciplinas; también da cuenta de la diferencia de especie entre los enunciados que se
proponen establecer las ciencias formales y las fácticas: mientras los enunciados formales
consisten en relaciones entre signos, los enunciados de las ciencias fácticas se refieren, en
su mayoría, a entes extracientíficos: a sucesos y procesos. Nuestra división también tiene encuenta el método por el cual se ponen a prueba los enunciados verificables: mientras las
ciencias formales se contentan con la lógica para demostrar rigurosamente sus teoremas (los
que, sin embargo, pudieron haber sido adivinados por inducción común o de otras maneras),
las ciencias fácticas necesitan más que la lógica formal: para confirmar sus conjeturas
necesitan de la observación y/o experimento. En otras palabras, las ciencias fácticas tienen
que mirar las cosas, y, siempre que les sea posible, deben procurar cambiarlas
deliberadamente para intentar descubrir en qué medida sus hipótesis se adecuan a los
hechos.
Cuando se demuestra un teorema lógico o matemático no se recurre a la experiencia: el
conjunto de postulados, definiciones, reglas de formación de las expresiones dotadas de
significado, y reglas de inferencia deductiva —en suma, la base de la teoría dada—, es
necesaria y suficiente para ese propósito. La demostración de los teoremas no es sino una
deducción: es una operación confinada a la esfera teórica, aun cuando a veces los teoremas
mismos (no sus demostraciones) sean sugeridos en alguna esfera extramatemática y aun
cuando su prueba (pero no su primer descubrimiento) pueda realizarse con ayuda de
calculadoras electrónicas. Por ejemplo, cualquier demostración rigurosa del teorema de
Pitágoras prescinde de las mediciones, y emplea figuras sólo como ayuda psicológica al
proceso deductivo: que el teorema de Pitágoras haya sido el resultado de un largo proceso
de inducción conectado a operaciones prácticas de mediciones de tierras, es objeto de la
historia, la sociología y la psicología del conocimiento.
La matemática y la lógica son, en suma, ciencias deductivas. El proceso constructivo, en que
la experiencia desempeña un gran papel de sugerencias, se limita a la formación de los puntos de partida (axiomas). En matemática la verdad consiste, por esto, en la coherencia del
enunciado dado con un sistema de ideas admitido previamente: por esto, la verdad
matemática no es absoluta sino relativa a ese sistema, en el sentido de que una proposición
que es válida en una teoría puede dejar de ser lógicamente verdadera en otra teoría. (Por
ejemplo, en el sistema de aritmética que empleamos para contar las horas del día, vale la
proposición de 24 + 1 = 1.) Más aún las teorías matemáticas abstractas, esto es, que contienen términos no interpretados (signos a los que no se atribuye un significado fijo, y que por lo tanto pueden adquirir distintos significados) pueden desarrollarse sin poner atención al
problema de la verdad.
Considérese el siguiente axioma de cierta teoría abstracta (no interpretada): "Existe por lo
menos un x tal que es F". Se puede dar un número ilimitado de interpretaciones (modelos) de
este axioma, dándose a x y F otros tantos significados. Si decimos que S designa punto,
obtenemos un modelo geométrico dado: si adoptamos la convención de que L designa
número, obtenemos un cierto modelo aritmético, y así sucesivamente. En cuanto "llenamos"
la forma vacía con un contenido específico (pero todavía matemático), obtenemos un sistema
de entes lógicos que tienen el privilegio de ser verdaderos o falsos dentro del sistema dado
de proposiciones: a partir de ahí tenemos que habérnoslas con el problema de la verdadmatemática. Aún así tan sólo las conclusiones (teoremas) tendrán que ser verdaderas: los axiomas mismos pueden elegirse a voluntad. La batalla se habrá ganado si se respeta la
coherencia lógica esto es, si no se violan las leyes del sistema de lógica que se ha convenido
en usar.
En las ciencias fácticas, la situación es enteramente diferente. En primer lugar, ellas no
emplean símbolos vacíos (variables lógicas) sino tan sólo símbolos interpretados; por ejemplo
no involucran expresiones tales como 'x es F', que no son verdaderas ni falsas. En segundo
lugar, la racionalidad —esto es, la coherencia con un sistema de ideas aceptado
previamente— es necesaria pero no suficiente para los enunciados fácticos; en particular la
sumisión a algún sistema de lógica es necesaria pero no es una garantía de que se obtenga
la verdad. Además de la racionalidad, exigimos de los enunciados de las ciencias fácticas que sean verificables en la experiencia, sea indirectamente (en el caso de las hipótesis generales), sea directamente (en el caso de las consecuencias singulares de las hipótesis). Únicamente después que haya pasado las pruebas de la verificación empírica podrá considerarse que un enunciado es adecuado a su objeto, o sea que es verdadero, y aún así hasta nueva orden. Por eso es que el conocimiento fáctico verificable se llama a menudo ciencia empírica.
En resumidas cuentas, la coherencia es necesaria pero no suficiente en el campo de las
ciencias de hechos: para anunciar que un enunciado es (probablemente) verdadero se
requieren datos empíricos (proposiciones acerca de observaciones o experimentos). En última instancia, sólo la experiencia puede decirnos si una hipótesis relativa a cierto grupo de
hechos materiales es adecuada o no. El mejor fundamento de esta regla metodológica que
acabamos de enunciar es que la experiencia le ha enseñado a la humanidad que el
conocimiento de hecho no es convencional, que si se busca la comprensión y el control de
los hechos debe partirse de la experiencia. Pero la experiencia no garantizará que la hipótesis
en cuestión sea la única verdadera: sólo nos dirá que es probablemente adecuada, sin excluir
por ello la posibilidad de que un estudio ulterior pueda dar mejores aproximaciones en la
reconstrucción conceptual del trozo de realidad escogido. El conocimiento fáctico, aunque
racional, es esencialmente probable: dicho de otro modo: la inferencia científica es una red de
inferencias deductivas (demostrativas) y probables (inconcluyentes).
Las ciencias formales demuestran o prueban: las ciencias fácticas verifican (confirman o
disconfirman) hipótesis que en su mayoría son provisionales. La demostración es completa
y final; la verificación es incompleta y por eso temporaria. La naturaleza misma del método
científico impide la confirmación final de las hipótesis fácticas. En efecto los científicos no
sólo procuran acumular elementos de prueba de sus suposiciones multiplicando el número
de casos en que ellas se cumplen; también tratan de obtener casos desfavorables a sus
hipótesis, fundándose en el principio lógico de que una sola conclusión que no concuerde
con los hechos tiene más peso que mil confirmaciones. Por ello, mientras las teorías formales
pueden ser llevadas a un estado de perfección (o estancamiento), los sistemas relativos a los
hechos son esencialmente defectuosos: cumplen, pues, la condición necesaria para serperfectibles. En consecuencia si el estudio de las ciencias formales vigoriza el hábito del rigor, el estudio de las ciencias fáctiles puede inducirnos a considerar el mundo como inagotable, y al hombre como una empresa inconclusa e interminable.
Las diferencias de método, tipo de enunciados y referentes que separan las ciencias fácticas
de las formales, impiden que se las examine conjuntamente más allá de cierto punto. Por ser
una ficción seria, rigurosa y a menudo útil, pero ficción al cabo, la ciencia formal requiere un
tratamiento especial. En lo que sigue nos concentraremos en la ciencia fáctica. Daremos un
vistazo a las características peculiares de las ciencias de la naturaleza y de la cultura en su
estado actual, con la esperanza de que la ciencia futura enriquezca sus cualidades o, al menos, de que las civilizaciones por venir hagan mejor uso del conocimiento científico.
Los rasgos esenciales del tipo de conocimiento que alcanzan las ciencias de la naturaleza y
de la sociedad son la racionalidad y la objetividad. Por conocimiento racional se entiende:
a) que está constituido por conceptos, juicios y raciocinios y no por sensaciones, imágenes,
pautas de conducta, etc. Sin duda, el científico percibe, forma imágenes (por ejemplo, modelos
visualizables) y hace operaciones; por tanto el punto de partida como el punto final de su
trabajo son ideas;
b) que esas ideas pueden combinarse de acuerdo con algún conjunto de reglas lógicas con
el fin de producir nuevas ideas (inferencia deductiva). Estas no son enteramente nuevas
desde un punto de vista estrictamente lógico, puesto que están implicadas por las premisas
de la deducción; pero no gnoseológicamente nuevas en la medida en que expresan
conocimientos de los que no se tenía conciencia antes de efectuarse la deducción;
c) que esas ideas no se amontonan caóticamente o, simplemente, en forma cronológica, sino
que se organizan en sistemas de ideas, esto es en conjuntos ordenados de proposiciones
(teorías).
Que el conocimiento científico de la realidad es objetivo, significa:
a) que concuerda aproximadamente con su objeto; vale decir que busca alcanzar la verdad
fáctica;
b) que verifica la adaptación de las ideas a los hechos recurriendo a un comercio peculiar con
los hechos (observación y experimento), intercambio que es controlable y hasta cierto punto
reproducible.
Ambos rasgos de la ciencia fáctica, la racionalidad y la objetividad, están íntimamente
soldados. Así, por ejemplo, lo que usualmente se verifica por medio del experimento es alguna consecuencia —extraída por vía deductiva— de alguna hipótesis; otro ejemplo: el cálculo no sólo sigue a la observación sino que siempre es indispensable para planearla y registrarla. La racionalidad y objetividad del conocimiento científico pueden analizarse en un cúmulo de características a las que pasaremos revista en lo que sigue.
3. Inventario de las principales características de la ciencia fáctica
1) El conocimiento científico es fáctico: parte de los hechos, los respeta hasta cierto punto,
y siempre vuelve a ellos. La ciencia intenta describir los hechos tal como son,
independientemente de su valor emocional o comercial: la ciencia no poetiza los hechos ni los
vende, si bien sus hazañas son una fuente de poesía y de negocios. En todos los campos, la
ciencia comienza estableciendo los hechos; esto requiere curiosidad impersonal, desconfianza
por la opinión prevaleciente, y sensibilidad a la novedad.
Los enunciados fácticos confirmados se llaman usualmente "datos empíricos"; se obtienen
con ayuda de teorías (por esquemáticas que sean) y son a su vez la materia prima de la
elaboración teórica. Una subclase de datos empíricos es de tipo cuantitativo; los datos
numéricos y métricos se disponen a menudo en tablas, las más importantes de las cuales son
las tablas de constantes (tales como las de los puntos de fusión de las diferentes sustancias).
Pero la recolección de datos y su ulterior disposición en tablas no es la finalidad principal de
la investigación: la información de esta clase debe incorporarse a teorías si ha de convertirse
en una herramienta para la inteligencia y la aplicación. ¿De qué sirve conocer el peso específico del hierro si carecemos de fórmulas mediante las cuales podemos relacionarlos con otras cantidades?
No siempre es posible, ni siquiera deseable, respetar enteramente los hechos cuando se los
analiza, y no hay ciencia sin análisis, aun cuando el análisis no sea sino un medio para la
reconstrucción final de los todos. El físico atómico perturba el átomo al que desea espiar; el
biólogo modifica e incluso puede matar al ser vivo que analiza; el antropólogo empeñado en
el estudio de campo de una comunidad provoca en ella ciertas modificaciones. Ninguno de
ellos aprehende su objeto tal como es, sino tal como queda modificado por sus propias
operaciones; sin embargo, en todos los casos tales cambios son objetivos, y se presume que
pueden entenderse en términos de leyes: no son conjurados arbitrariamente por el
experimentador. Más aún, en todos los casos el investigador intenta describir las
características y el monto de la perturbación que produce en el acto del experimento; procura,
en suma estimar la desviación o "error" producido por su intervención activa. Porque los
científicos actúan haciendo tácitamente la suposición de que el mundo existiría aun en su
ausencia, aunque desde luego, no exactamente de la misma manera.
2) El conocimiento científico trasciende los hechos: descarta los hechos, produce nuevos
hechos, y los explica. El sentido común parte de los hechos y se atiene a ellos: a menudo se
imita al hecho aislado, sin ir muy lejos en el trabajo de correlacionarlo con otros o de
explicarlo. En cambio, la investigación científica no se limita a los hechos observados: los
científicos exprimen la realidad a fin de ir más allá de las apariencias; rechazan el grueso de
los hechos percibidos, por ser un montón de accidentes, seleccionan los que consideran que
son relevantes, controlan hechos y, en lo posible, los reproducen. Incluso producen cosas
nuevas desde instrumentos hasta partículas elementales; obtienen nuevos compuestos
químicos, nuevas variedades vegetales y animales, y al menos en principio, crean nuevas
Mario Bunge La ciencia. Su método y su filosofía pautas de conducta individual y social.
Más aún, los científicos usualmente no aceptan nuevos hechos a menos que puedan
certificar de alguna manera su autenticidad; y esto se hace, no tanto contrastándolos con
otros hechos, cuanto mostrando que son compatibles con lo que se sabe. Los científicos
descartan las imposturas y los trucos mágicos porque no encuadran en hipótesis muy
generales y fidedignas, que han sido puestas a prueba en incontables ocasiones. Vale decir,
los científicos no consideran su propia experiencia individual como un tribunal inapelable;
se fundan, en cambio, en la experiencia colectiva y en la teoría.
Hay más: el conocimiento científico racionaliza la experiencia en lugar de limitarse a
describirla; la ciencia da cuenta de los hechos no inventariándolos sino explicándolos por
medio de hipótesis (en particular, enunciados de leyes) y sistemas de hipótesis (teorías). Los
científicos conjeturan lo que hay tras los hechos observados, y de continuo inventan
conceptos (tales como los del átomo, campo, masa, energía, adaptación, integración,
selección, clase social, o tendencia histórica) que carecen de correlato empírico, esto es, que
no corresponden a preceptos, aun cuando presumiblemente se refieren a cosas, cualidades
o relaciones existentes objetivamente. No percibimos los campos eléctricos o las clases
sociales: inferimos su existencia a partir de hechos experimentables y tales conceptos son
significativos tan sólo en ciertos contextos teóricos.
Este trascender la experiencia inmediata, ese salto del nivel observacional al teórico, le permite a la ciencia mirar con desconfianza los enunciados sugeridos por meras coincidencias; le permite predecir la existencia real de las cosas y procesos ocultos a primera vista pero que instrumentos (materiales o conceptuales) más potentes pueden descubrir. Las discrepancias entre las previsiones teóricas y los hallazgos empíricos figuran entre los estímulos más fuertes para edificar teorías nuevas y diseñar nuevos experimentos. No son los hechos por sí mismos sino su elaboración teórica y la comparación de las consecuencias de las teorías con los datos observacionales, la principal fuente del descubrimiento de nuevos hechos.
3) La ciencia es analítica: la investigación científica aborda problemas circunscriptos, uno a
uno, y trata de descomponerlo todo en elementos (no necesariamente últimos o siquiera
reales). La investigación científica no se planta cuestiones tales como "¿Cómo es el universo
en su conjunto?", o "¿Cómo es posible el conocimiento?" Trata, en cambio, de entender toda
situación total en términos de sus componentes; intenta descubrir los elementos que explican
su integración.
Los problemas de la ciencia son parciales y así son también, por consiguiente, sus
soluciones; pero, más aún: al comienzo los problemas son estrechos o es preciso
estrecharlos. Pero, a medida que la investigación avanza, su alcance se amplía. Los resultados de la ciencia son generales, tanto en el sentido de que se refieren a clases de objetos (por ejemplo, la lluvia), como en que están, o tienden a ser incorporados en síntesis conceptuales llamadas teorías. El análisis, tanto de los problemas como de las cosas, no es tanto uno bjetivo como una herramienta para construir síntesis teóricas. La ciencia auténtica no es atomista ni totalista.
La investigación comienza descomponiendo sus objetos a fin de descubrir el "mecanismo"
interno responsable de los fenómenos observados. Pero el desmontaje del mecanismo no se
detiene cuando se ha investigado la naturaleza de sus partes; el próximo paso es el examen
de la interdependencia de las partes, y la etapa final es la tentativa de reconstruir el todo en
términos de sus partes interconectadas. El análisis no acarrea el descuido de la totalidad; lejos de disolver la integración, el análisis es la única manera conocida de descubrir cómo emergen, subsisten y se desintegran los todos. La ciencia no ignora la síntesis: lo que sí rechaza es la pretensión irracionalista de que las síntesis pueden ser aprehendidas por una intuición especial, sin previo análisis.
4) La investigación científica es especializada: una consecuencia del enfoque analítico de los
problemas es la especialización. No obstante la unidad del método científico, su aplicación
depende, en gran medida, del asunto; esto explica la multiplicidad de técnicas y la relativa
independencia de los diversos sectores de la ciencia.
5) El conocimiento científico es claro y preciso: sus problemas son distintos, sus resultados
son claros. El conocimiento ordinario, en cambio, usualmente es vago e inexacto; en la vida
diaria nos preocupamos poco por definiciones precisas, descripciones exactas, o mediciones
afinadas: si éstas nos preocuparan demasiado, no lograríamos marchar al paso de la vida.
La claridad y la precisión se obtienen en ciencia de las siguientes maneras:
a) los problemas se formulan de manera clara; lo primero, y a menudo lo más difícil, es
distinguir cuáles son los problemas; ni hay artillería analítica o experimental que pueda ser
eficaz si no se ubica adecuadamente al enemigo;
b) la ciencia parte de nociones que parecen claras al no iniciado; y las complica, purifica y
eventualmente las rechaza; la transformación progresiva de las nociones corrientes se efectúa
incluyéndolas en esquemas teóricos. Así, por ejemplo, "distancia" adquiere un sentido
preciso al ser incluida en la geometría métrica y en la física;
c) la ciencia define la mayoría de sus conceptos: algunos de ellos se definen en términos de
conceptos no definidos o primitivos, otros de manera implícita, esto es, por la función que
desempeñan en un sistema teórico (definición contextual). Las definiciones son
convencionales, pero no se las elige caprichosamente: deben ser convenientes y fértiles. (¿De
qué vale, por ejemplo, poner un nombre especial a las muchachas pecosas que estudian
ingeniería y pesan más de 50 kg?) Una vez que se ha elegido una definición, el discurso
restante debe guardarte fidelidad si se quiere evitar inconsecuencias;
d) la ciencia crea lenguajes artificiales inventando símbolos (palabras, signos matemáticos,
símbolos químicos, etc.; a estos signos se les atribuye significados determinados por medio
de reglas de designación (tal como "en el presente contexto H designa el elemento de peso
atómico unitario"). los símbolos básicos serán tan simples como sea posible, pero podrán
combinarse conforme a reglas determinadas para formar configuraciones tan complejas como
sea necesario (las leyes de combinación de los signos que intervienen en la producción de
expresiones complejas se llaman reglas de formación);e) la ciencia procura siempre medir y registrar los fenómenos. Los números y las formas geométricas son de gran importancia en el registro, la descripción y la inteligencia de los sucesos y procesos. En lo posible, tales datos debieran disponerse en tablas o resumirse en fórmulas matemáticas. Sin embargo, la formulación matemática, deseable como es, no es una condición indispensable para que el conocimiento sea científico; lo que caracteriza el conocimiento científico es la exactitud en un sentido general antes que la exactitud numérica o métrica, la que es inútil si media la vaguedad conceptual. Más aún, la investigación científica emplea, en medida creciente, capítulos no numéricos y no métricos de la matemática, tales como la topología, la teoría de los grupos, o el álgebra de las clases, que no son ciencias del número y la figura, sino de la relación.
6) El conocimiento científico es comunicable: no es inefable sino expresable, no es privado
sino público. El lenguaje científico comunica información a quienquiera haya sido adiestrado
para entenderlo. Hay, ciertamente, sentimientos oscuros y nociones difusas, incluso en el desarrollo de la ciencia (aunque no en la presentación final del trabajo científico); pero es
preciso aclararlos antes de poder estimar su adecuación. Lo que es inefable puede ser propio
de la poesía o de la música, no de la ciencia, cuyo lenguaje es informativo y no expresivo o
imperativo. La inefabilidad misma es, en cambio, tema de investigación científica, sea
psicológica o lingüística.
La comunicabilidad es posible gracias a la precisión; y es a su vez una condición necesaria
para la verificación de los datos empíricos y de las hipótesis científicas. Aun cuando, por
"razones" comerciales o políticas, se mantengan en secreto durante algún tiempo unos trozos
del saber, deben ser comunicables en principio para que puedan ser considerados científicos.
La comunicación de los resultados y de las técnicas de la ciencia no sólo perfecciona la
educación general sino que multiplica las posibilidades de su confirmación o refutación. La
verificación independiente ofrece las máximas garantías técnicas y morales, y ahora es
posible, en muchos campos, en escala internacional. Por esto, los científicos consideran el
secreto en materia científica como enemigo del progreso de la ciencia; la política del secreto
científico es, en efecto, el más eficaz originador de estancamiento en la cultura, en la
tecnología y en la economía, así como una fuente de corrupción moral.
7) El conocimiento científico es verificable: debe aprobar el examen de la experiencia. A fin de
explicar un conjunto de fenómenos, el científico inventa conjeturas fundadas de alguna
manera en el saber adquirido. Sus suposiciones pueden ser cautas o audaces simples o
complejas; en todo caso deben ser puestas a prueba. El test de las hipótesis fácticas es
empírico, esto es, observacional o experimental. El haberse dado cuenta de esta verdad hoy
tan trillada es la contribución inmortal de la ciencia helenística. En ese sentido, las ideas
científicas (incluidos los enunciados de leyes) no son superiores a las herramientas o a los
vestidos: si fracasan en la práctica, fracasan por entero.
La experimentación puede calar más profundamente que la observación, porque efectúa
cambios en lugar de limitarse a registrar variaciones: aísla y controla las variables sensibles
o pertinentes. Sin embargo los resultados experimentales son pocas veces interpretables de
una sola manera. Más aún, no todas las ciencias pueden experimentar; y en ciertos capítulos
de la astronomía y de la economía se alcanza una gran exactitud sin ayuda del experimento.
La ciencia fáctica es por esto empírica en el sentido de que la comprobación de sus hipótesis
involucra la experiencia; pero no es necesariamente experimental y en particular no es agotada por las ciencias de laboratorio, tales como la física.
8) La investigación científica es metódica: no es errática sino planeada. Los investigadores
no tantean en la oscuridad: saben lo que buscan y cómo encontrarlo. El planeamiento de la
investigación no excluye el azar; sólo que, a hacer un lugar a los acontecimientos imprevistos
es posible aprovechar la interferencia del azar y la novedad inesperada. Más aún a veces el
investigador produce el azar deliberadamente. Por ejemplo, para asegurar la uniformidad de
una muestra, y para impedir una preferencia inconsciente en la elección de sus miembros, a
menudo se emplea la técnica de la casualización, en que la decisión acerca de los individuos
que han de formar parte de ciertos grupos se deja librada a una moneda o a algún otro
dispositivo. De esta manera, el investigador pone el azar al servicio de orden: en lo cual no
hay paradoja, porque el acaso opera al nivel de los individuos, al par que el orden opera en
el grupo con totalidad.
9) El conocimiento científico es sistemático: una ciencia no es un agregado de informaciones
inconexas, sino un sistema de ideas conectadas lógicamente entre sí. Todo sistema de ideas
caracterizado por cierto conjunto básico (pero refutable) de hipótesis peculiares, y que
procura adecuarse a una clase de hechos, es una teoría. Todo capítulo de una ciencia especial contiene teorías o sistemas de ideas que están relacionadas lógicamente entre sí, esto es, que están ordenadas mediante la relación "implica". Esta conexión entre las ideas puede calificarse de orgánica, en el sentido de que la sustitución de cualquiera de las hipótesis básicas produce un cambio radical en la teoría o grupo de teorías.
El fundamento de una teoría dada no es un conjunto de hechos sino, más bien, un conjunto
de principios, o hipótesis de cierto grado de generalidad (y, por consiguiente, de cierta
fertilidad lógica). Las conclusiones (o teoremas) pueden extraerse de los principios, sea en
la forma natural, o con la ayuda de técnicas especiales que involucran operaciones
matemáticas.
El carácter matemático del conocimiento científico —esto es, el hecho de que es fundado,
ordenado y coherente— es lo que lo hace racional. La racionalidad permite que el progreso
científico se efectúe no sólo por la acumulación gradual de resultados, sino también por
revoluciones. Las revoluciones científicas no son descubrimientos de nuevos hechos
aislados, ni son perfeccionamientos en la exactitud de las observaciones, sino que consisten
en la sustitución de hipótesis de gran alcance (principios) por nuevos axiomas, y en el
reemplazo de teorías enteras por otros sistemas teóricos. Sin embargo, semejantes
revoluciones son a menudo provocadas por el descubrimiento de nuevos hechos de los que
no dan cuenta las teorías anteriores, aunque a veces se encuentran en el proceso de
comprobación de dichas teorías; y las nuevas teorías se tornan verificables en muchos casos,
merced a la invención de nuevas técnicas de medición, de mayor precisión.
10) El conocimiento científico es general: ubica los hechos singulares en pautas generales,
los enunciados particulares en esquemas amplios. El científico se ocupa del hecho singular
en la medida en que éste es miembro de una clase o caso de una ley; más aún, presupone que todo hecho es clasificable y legal. No es que la ciencia ignore la cosa individual o el hecho
Mario Bunge La ciencia. Su método y su filosofía irrepetible; lo que ignora es el hecho aislado. Por esto la ciencia no se sirve de los datos empíricos —que siempre son singulares— como tales; éstos son mudos mientras no se los manipula y convierte en piezas de estructuras teóricas.
En efecto, uno de los principios ontológicos que subyacen a la investigación científica es que
la variedad y aun la unicidad en algunos respectos son compatibles con la uniformidad y la
generalidad en otros respectos. Al químico no le interesa ésta o aquella hoguera, sino el
proceso de combustión en general: trata de descubrir lo que comparten todos los singulares.
El científico intenta exponer los universales que se esconden en el seno de los propios
singulares; es decir, no considera los universales ante rem ni post rem sino in re: en la cosa,
y no antes o después de ella. Los escolásticos medievales clasificarían al científico moderno
como realista inmanentista, porque, al descartar los detalles al procurar descubrir los rasgos
comunes a individuos que son únicos en otros respectos, al buscar las variables pertinentes
(o cualidades esenciales) y las relaciones constantes entre ellas (las leyes), el científico
intenta exponer la naturaleza esencial de las cosas naturales y humanas.
El lenguaje científico no contiene solamente términos que designan hechos singulares y
experiencias individuales, sino también términos generales que se refieren a clases de hechos. La generalidad del lenguaje de la ciencia no tiene, sin embargo, el propósito de alejar a la ciencia de la realidad concreta: por el contrario, la generalización es el único medio que se conoce para adentrarse en lo concreto, para apresar la esencia de las cosas (sus cualidades y leyes esenciales). Con esto, el científico evita en cierta medida las confusiones y los engaños provocados por el flujo deslumbrador de los fenómenos. Tampoco se asfixia la
utilidad en la generalidad: por el contrario, los esquemas generales de la ciencia encuadran
una cantidad ilimitada de casos específicos, proveen leyes de amplio alcance que incluyen
y corrigen todas las recetas válidas de sentido común y de la técnica precientífica.
11) El conocimiento científico es legal: busca leyes (de la naturaleza y de la cultura) y las
aplica. El conocimiento científico inserta los hechos singulares en pautas generales llamadas
"leyes naturales" o "leyes sociales". Tras el desorden y la fluidez de las apariencias, la ciencia
fáctica descubre las pautas regulares de la estructura y del proceso del ser y del devenir. En
la medida en que la ciencia es legal, es esencialista: intenta legar a la raíz de las cosas.
Encuentra la esencia en las variables relevantes y en las relaciones invariantes entre ellas.
Hay leyes de hechos y leyes mediante las cuales se pueden explicar otras leyes.
12) La ciencia es explicativa: intenta explicar los hechos en términos de leyes, y las leyes en
términos de principios. Los científicos no se conforman con descripciones detalladas; además
de inquirir cómo son las cosas, procuran responder al por qué: por qué ocurren los hechos
como ocurren y no de otra manera. La ciencia deduce proposiciones relativas a hechos
singulares a partir de leyes generales, y deduce las leyes a partir de enunciados nomológicos
aún más generales (principios). Por ejemplo, las leyes de Kepler explicaban una colección de
hechos observados del movimiento planetario; y Newton explicó esas leyes deduciéndolas
de principios generales explicación que permitió a otros astrónomos dar cuenta de las
irregularidades de las órbitas de los planetas que eran desconocidas para Kepler.
13) El conocimiento científico es predictivo: Trasciende la masa de los hechos de experiencia,
imaginando cómo puede haber sido el pasado y cómo podrá ser el futuro. La predicción es,
en primer lugar, una manera eficaz de poner a prueba las hipótesis; pero también es la clave
del control y aun de la modificación del curso de los acontecimientos. La predicción científica
en contraste con la profecía se funda sobre leyes y sobre informaciones específicas
fidedignas, relativas al estado de cosas actual o pasado. No es del tipo "ocurrirá E", sino más
bien de este otro: "ocurrirá E1 siempre que suceda C1, pues siempre que sucede C es seguido por o está asociado con E". C y E designan clases de sucesos en tanto que C1 y E1 denotan los hechos específicos que se predicen sobre la base del o los enunciados que conectan a C con E en general.
14) La ciencia es abierta: no reconoce barreras a priori que limiten el conocimiento. Si un
conocimiento fáctico no es refutable en principio, entonces no pertenece a la ciencia sino a
algún otro campo. Las nociones acerca de nuestro medio, natural o social, o acerca del yo,
no son finales: están todas en movimiento, todas son falibles. Siempre es concebible que
pueda surgir una nueva situación (nuevas informaciones o nuevos trabajos teóricos) en que
nuestras ideas, por firmemente establecidas que parezcan, resulten inadecuadas en algún
sentido. La ciencia carece de axiomas evidentes: incluso los principios más generales y
seguros son postulados que pueden ser corregidos o reemplazados. A consecuencia del
carácter hipotético de los enunciados de leyes, y de la naturaleza perfectible de los datos
empíricos la ciencia no es un sistema dogmático y cerrado sino controvertido y abierto. O,
más bien, la ciencia es abierta como sistema porque es falible y por consiguiente capaz de
progresar. En cambio, puede argüirse que la ciencia es metodológicamente cerrada no en el
sentido de que las reglas del método científico sean finales sino en el sentido de que es
autocorrectiva: el requisito de la verificabilidad de las hipótesis científicas basta para asegurar
el progreso científico.
15) La ciencia es útil: porque busca la verdad, la ciencia es eficaz en la provisión de
herramientas para el bien y para el mal. El conocimiento ordinario se ocupa usualmente de
lograr resultados capaces de ser aplicados en forma inmediata; con ello no es suficientemente verdadero, con lo cual no puede ser suficientemente eficaz. Cuando se dispone de un conocimiento adecuado de las cosas es posible manipularlas con éxito. La utilidad de la ciencia es una consecuencia de su objetividad; sin proponerse necesariamente alcanzar resultados aplicables, la investigación los provee a la corta o a la larga. La sociedad moderna paga la investigación porque ha aprendido que la investigación rinde. Por este motivo, es redundante exhortar a los científicos a que produzcan conocimientos aplicables: no pueden dejar de hacerlo. Es cosa de los técnicos emplear el conocimiento científico con fines
prácticos, y los políticos son los responsables de que la ciencia y la tecnología se empleen
en beneficio de la humanidad. Los científicos pueden, a lo sumo, aconsejar acerca de cómo
puede hacerse uso racional, eficaz y bueno de la ciencia.
La conexión de la ciencia con la tecnología no es por consiguiente asimétrica. Todo avance
tecnológico plantea problemas científicos cuya solución puede consistir en la invención de
nuevas teorías o de nuevas técnicas de investigación que conduzcan a un conocimiento más
adecuado y a un mejor dominio del asunto. La ciencia y la tecnología constituyen un ciclo que
hace el técnico y éste provee a la ciencia de instrumentos y de comprobaciones; y lo que es
igualmente importante el técnico no cesa de formular preguntas al científico añadiendo así un
motor externo al motor interno del progreso científico. La continuación de la vida sobre la
Tierra depende del ciclo de carbono: los animales se alimentan de plantas, las que a su vez
obtienen su carbono de lo que exhalan los animales. Análogamente la continuación de la
civilización moderna depende, en gran medida del ciclo del conocimiento: la tecnología
moderna come ciencia, y la ciencia moderna depende a su vez del equipo y del estímulo que
le provee una industria altamente tecnificada.
Pero la ciencia es útil en más de una manera. Además de constituir el fundamento de la
tecnología, la ciencia es útil en la medida en que se la emplea en la edificación de
concepciones del mundo que concuerdan con los hechos, y en la medida en que crea el
hábito de adoptar una actitud de libre y valiente examen, en que acostumbra a la gente a
poner a prueba sus afirmaciones y a argumentar correctamente. No menor es la utilidad que
presta la ciencia como fuente de apasionantes rompecabezas filosóficos, y como modelo de
la investigación filosófica.
En resumen, la ciencia es valiosa como herramienta para domar la naturaleza y remodelar la
sociedad; es valiosa en sí misma, como clave para la inteligencia del mundo y del yo; y es
eficaz en el enriquecimiento, la disciplina y la liberación de nuestra mente.
Fuente: http://www.aristidesvara.net/pgnWeb/metodologia/metodo_cientifico/naturaleza_metodo/bunge_libro_aristidesvara.pdf